ADHS Natürlich Behandeln - Überaktivität Behandlung | BIOHERBY BACOPA ADHS

BACOPA+

 

 STOP ADHS!

 

 

 

 

BACOPA

+

 

BIOHERBY ALTERNATIVE MEDIKAMENTE UND HOMÖOPATHIE

BACOPAplus              EQ STOP ADHS!

STOP ADHS!

BACOPA+

 CONCENTRATE

BACOPA+

VITAMIN+

   pro SPORT

VITAMINEpro  NX+

1024px-Flag_of_Germany_(3-2_aspect_ratio

VITAMIN

      VITAMINNX

Naturalis Magismus - Über Vitamine.

Wusstest du das? Die Wahrheit über Ergänzungen & Vitamine.

Feb 2020, Berlin Deutschland, Zurich Swiss, New York USA, Tokyo en realisevJapan, Seoul Korea, Melbourne Australia, Shanghai China,Paris France, Madrid Spain, Bruxxel Belgium, Luxembourg Luxembourg, Praha Cheg, Capetown SouthAfrika, Wherever you go in this World, you will notice that people are allways playing Sports, taking care of themself, shopping for clothes, scents, to smell and look good.  A bag of Lious Vittion will cost you 2500 Euro, a fake one 25. 99% of people wear fake LV bags, and they wont admit it. Right? I do not understand why people care about Designer clothes, but lack the knowledge of something that can alter there physical and Mental State. Im tyalking about SUpplements and Vitamins. Aprox 99% of the Adults in the Western World have bought some supplement or Vitamine once or more in their lifetime.. But not even 1% of these same adults knew what they bought. You probably didnt even realise it and never thought about uit, because your brain assumes thast common situations are safe. because you see/hear/feel them often.

So what if I told you that 99,9% of all Supplements are Synthetic produced Vitamins and Minerals of chemical, non-organical compounds?

What if I told you that all mayor brands, including  the "kids vitamins that look and taste like Candy" Davitamon are absolutly not healthy and will, like all synthetic compounds do, interrupt the Re-reneration of your DNA.

This invokes inflammatory, parkinson, cancer, blood clocks and more 'Sickness of Ageing'. 

I heard people say: I took  Vitamins and i never noticed something or anything. 'Course one wont Die for consuming microscopical doses of Chemical compounds, thats not how things work. Intake of non-organic material can disrupt Proteins (amino-acids, BCCA) from perfectly fitting in. Re-connection the Synapsis is part of our life cycle. You can see it for yourself! When you have a wound it will heal right? Synapsis! The Re-Genaration of DNA, results in the healing of your wound. When you are healthy your wounds will heal faster and better. 

Wikipedia about Re-Generation: 

Synapsis (also called syndesis) is the pairing of two homologous chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them. Synapsis takes place during prophase I of meiosis. When homologous chromosomes synapse, their ends are first attached to the nuclear envelope. These end-membrane complexes then migrate, assisted by the extranuclear cytoskeleton, until matching ends have been paired. Then the intervening regions of the chromosome are brought together, and may be connected by a protein-RNA complex called the synaptonemal complex.[1] Autosomes undergo synapsis during meiosis, and are held together by a protein complex along the whole length of the chromosomes called the synaptonemal complex. Sex chromosomes also undergo synapsis; however, the synaptonemal protein complex that holds the homologous chromosomes together is only present at one end of each sex chromosome. [2]

-End of Wikipedia

Diseases of old age, Alterskrankheiten. Synthetic Supplements are a billion Dollar Industrie, everyone knows that, right? And the toxicity takes years and years to reach a critical level, and when one is over 50 they will call it , diseases of old age. Ignorant people will say that this is overreacted, but I Never concluded that Supplements are the main cause of Diseases of Old Age, right? There are multiple factors that decrease or extend lifespan.

 

I will name a few, please click on the Subject to read more.

 

GI Index. (Glycemic index, the way you absorb Energie though Food that is, Refined Sugar will peak your GI for a couple of Minutes, this so-called peaking and more important the downing that follows makes your Re-generation work very hard for a very short time. While when one consumes Coconut SUgar (one of worlds healthiest sugars, sweeteners) your GI will curve gradually. When GI Levels are peaked to often your kidney will not be able to stabilizing ones blood levels back to normal and that results in DM-2 and DM-1. (Diabetes)

Microwave Radiation.

Microwave Radiation is literally the disruptment of Atoms. microwaves generate Waves, that ,operate on a certain level MHZ/GHZ the range is between 1 and 100 GHz (wavelengths between 0.3 m and 3 mm). These waves make the Atoms 'dance', this constant friction, generates heat, that knows everyone. (Or energie generates heat? of heat generates Energie? Both answers are possible, on Earth all these Equations are mathematically determined provisions. Calcufriction I will call it ;)  x=Calculable frictions :P On Earth it doesnt matter if an object is Nano of Mega, Physics remain Physi s, *Isaac Newton. 

Space Walks.

Gamma Radiation.. You know that even we had the Rockets and Mega Tanks fulled with Kerosine to go to Mars, yu would most certainly die in Space of excessive Gamma. A pulsarwave that would occur in the Milkyway Galaxy will wipe out all life in the MWG, as we know it. Lucky for us there is nor a RedDwraf or Dying star in our Galaxy. yeeeeeeey. Oh, but there is one Star that is on a collision. Our SUN! When our Sun is out of Helium, it will collapse, lucky its not massive enough to create a BlackHole. The Sun flares strokes of UVb UVa and many more ofourse but these are minimized in our Athmosphere, Bioherby introducing Natural Skinprotector with SPF and When summer starts take  Bioherbys Carotenoïde & Beta-Caroteen Bioherby CBC Bio Supplements. Carotenoïde will make your skin more brown even if the Sun doesnt Shine. Beta_caroteen helps skin to re-generate, yes idd Synapsis!

Stress.

Stress is the number 1 Lifespan decreaser. Numerous tests have been done in Mice, Rats, Monkeys and yes, even Humans. One day of Stress equals 2 packs of sigarets. Stress shortens lifespan, Stress makes people commit suicude. This makes the people that Generate Stress on purpose, people that decrease other humans lifespan on purpose, right?

 

Effects of anxiety on sensory-perceptual processing (arrows represent direction of effect).

DomainTask detailsThreat of shockAnxiety disorders

ReferencesReferences

Early sensoryPresentation of sounds/pictures↑Baas et al., 2006; Cornwell et al., 2007; Laretzaki et al., 2010; Shackman et al., 2011a↑Knott et al., 1994; Morgan III and Grillon, 1999; Woodward et al., 2001; Ge et al., 2011

Sensory gatingOcular motor response to sound↑Davis, 1998; Grillon, 2002#↑Grillon, 2002#

Sensory gatingStartle attenuated by cue (PPI)↑Grillon and Davis, 2007; Cornwell et al., 2008=Grillon et al., 1996; Ludewig et al., 2002; Hoenig et al., 2005

Emotion perceptionDetection of negative information↑Grillon and Charney, 2011; Robinson et al., 20112012a↑Monk et al., 2006; Blair et al., 2008; Roy et al., 2008

Anxiety disorders are a major worldwide health problem with sizeable psychological, social, and economic costs (Beddington et al., 2008). The impact of anxiety on cognitive function is a major contributing factor to these costs; anxiety disorders can promote a crippling focus upon negative life-events and make concentration difficult, which can lead to problems in both social and work environments. In such situations the state of anxiety can be seen as maladaptive. Anxiety can, however, also improve the ability to detect and avoid danger which, under the right circumstances—such as walking home alone in the dark—can be adaptive. The precise impact of anxiety on cognition is, however, unclear. In this narrative review we focus on an emerging, translational, within-subjects state anxiety induction method—threat of unpredictable electrical shock—which may help quantify the impact of anxiety on cognition.

Go to:

Defining cognition and anxiety

Cognition

We define cognition as “information processing” (the term comes from the Latin cognoscere, which means “to conceptualize,” “to know,” or “to recognize”). Processing information from the outside world and determining how to use that information increases adaptive strength and reproductive success. In this review, we make broad a distinction between hot cognition, which involves affective (i.e., emotionally valenced) information, and cold cognition, which involves affectively neutral information. These categories are likely too simplistic, but they have heuristic value as a broad framework in which to dissociate effects. Across both of these cognitive categories, we also make a distinction between (1) sensory-perceptual processes (i.e., early processing and detection of stimuli); (2) attention/control (i.e., the ability to attend to some stimuli and ignore others); (3) memory (i.e., maintenance and retrieval of information); and (4) executive function (i.e., complex integrative and decision-making processes). These functions are presented in order of, broadly speaking, ascending phylogenetic “complexity”; perceptual processes occur rapidly, largely in subcortical and posterior cortical circuits, and attention, higher-order learning and executive processes require progressively more complex integration of cortically processed information. There are, of course, many exceptions, but these four broad divisions form the logical hierarchical structure for this review.

Anxiety

Throughout this paper, we examine the effects of anxiety on the above cognitive functions. To this end, anxiety is defined as the response to prolonged, unpredictable threat, a response which encompasses physiological, affective, and cognitive changes (Grillon et al., 1991; Grillon, 2008; Davis et al., 2010). According to this definition, anxiety is distinct from fear; a response to acute predictable threats. Fear and anxiety are dissociable at the behavioral, neural, and pharmacological level (Grillon et al., 1991; Grillon, 2008; Davis et al., 2010). Anxiety states appear to be well-conserved across numerous species, and as such (similarly to fear), they confer adaptive value. Specifically, in unfamiliar and uncertain environments, cautious avoidance while maintaining heightened vigilance and action readiness for signs of imminent danger improves survival odds (Kalin and Shelton, 1989). However, if this behavior is adopted permanently it can become maladaptive.

In this review, we focus on functional responses evoked in healthy volunteers using the translational threat of shock paradigm, an experimental model of anxiety which operationalizes anxiety in the same manner as our definition above—as responses to prolonged unpredictable threats. These threats are non-contingent upon the task and are rare and uncontrollable.

Why do we need human models of anxiety? By examining anxiety under carefully controlled conditions, we can clarify cause-effect relations and bridge the gap between the human and animal literatures on anxiety. Although human models have important limitations (e.g., no knockout models or single cell recording), they also present the key advantage of taking into account certain features of behavior and higher-order cognition that cannot be modeled in animals (e.g., subjective, conscious experiences, or language). Human models of anxiety, such as threat of shock, do not model a pathological state but an adaptive response. As such, they provide research tools to study functional responses, which are a prerequisite to identifying dysfunctional mechanisms. Despite the ubiquity of anxiety, and the global burden of maladaptive anxiety (Beddington et al., 2008), our understanding of the neural, systems, and psychological mechanisms underlying anxiety-cognition interactions is surprisingly lacking.

The objectives of this review are thus two-fold, (1) to describe the effect of induced-anxiety on various cognitive processes and (2) to identify commonalities and differences with these cognitive processes in pathological anxiety and, where possible, in high dispositionally (i.e., trait) anxious individuals (see Table ​Table11 for a thorough definition of these different types of anxiety). The guiding principle of this review is that on the one hand, where commonalities exist, the threat of shock paradigm can be used as an analog of pathological anxiety. On the other hand, when differences are identified, they may point to important boundaries between adaptive and maladaptive states.

Definitions of anxiety.

(A) ANXIETY DISORDERS:

(1) Pathological anxiety

Pathological anxiety is associated with persistent and debilitating apprehension about negative future events, and it can have a wide range of effects on cognitive performance, including facilitative effects (e.g., threat detection) as well as detrimental effects (e.g., distractibility). Indeed, the DSM-IV definitions of anxiety disorders prominently feature “difficulty concentrating” as a key symptom. DSM-IV defines a number of different anxiety disorders including generalized anxiety disorder (GAD), phobias, panic disorder, post-traumatic stress disorder PTSD), and obsessive–compulsive disorder [OCD; although this disorder is now thought to be more of a compulsivity disorder than an anxiety disorder (Fineberg et al., 2009)]. It should be noted that it is rare to find a patient who suffers a “pure” anxiety disorder because the rates of co-occurrence with depression are very high (Mineka et al., 1998; Kessler et al., 2012) and it is unclear how many of these symptoms can be attributed to anxiety alone.

(B) ANXIOUS STATES:

(2) The threat of shock paradigm

The threat of shock technique is a robust, translational (Davis et al., 2010), and well-validated (Schmitz and Grillon, 2012) within-subjects anxiety induction technique in which subjects are told that they are at risk of infrequent electrical shocks. Whilst anticipating the shocks subjects can be tested upon a cognitive task. This can alternate with a “safe” no shock condition to directly manipulate state anxiety within subjects. Such designs have a number of advantages; each subject acts as his or her own control; the psychological state of interest (i.e., anxiety) is directly manipulated; and the heterogeneities (e.g., comorbidities) of patient populations are avoided (Robinson et al., 2012b).

(3) Self-report questionnaire measures

Another popular approach to examining the impact of anxiety on cognition is through the use of non-diagnostic questionnaires to determine a disposition to anxiety [e.g., Spielberger trait anxiety scale (Spielberger et al., 1970)] or the BIS/BAS (“behavioral approach system behavioral avoidance inhibition system”; Carver and White, 1994) that seek to capture stable attributes of anxiety, including specific triggers (e.g., public speaking, mathematical problem solving, test-taking). Dispositional/trait anxiety scores are then correlated with task outcomes or, alternatively, a median split approach compares high and low anxious subjects. Dispositional anxiety is often viewed as a vulnerability factor in the development of psychopathology but there are multiple differences when comparing across induced and dispositional anxiety. It should be noted that neither pathological nor dispositional anxiety can be turned on and off (e.g., for memory tasks, effects on encoding, and retrieval cannot be studied separately) or studied in isolation. It is therefore important to note that their associated effects cannot be irrefutably attributed to anxiety versus another related aspect of the disorder [e.g., personality factors, cognitive diathesis (Abramson et al., 2002)]. Moreover, there are a number of statistical concerns regarding self-report approaches (Shackman et al., 2006). For example; correlational analyses are not directional, median split analyses, or other extreme-groups (categorical; e.g., upper/lower tercile or decile) approaches can result in arbitrary cut-offs. In the present text we refer to studies utilizing this methodology specifically as dispositional anxiety studies; in contrast with the induced-anxiety evoked by threat of shock.

(4) Other state anxiety paradigms

In addition to threat of shock, there are number of other common stress/anxiety inductions including social (speech) stressors, cold pressor tests (where the hand is submerged in cold water), and viewing anxiety-inducing movies or pictures. Although this review does not focus on these techniques, they are occasionally referenced where they illuminate differences or can help interpret results under threat of shock. One key problem with some of these manipulations (such as anxiety-inducing movies) is that they are often between-session manipulations performed once at the start of a study visit, with testing following manipulation. As such, it can be unclear whether they reveal the effects of anxiety or the recovery from a stressor (Shackman et al., 2006).

Please read some Articles about the fact on Stress and S

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881589/

about thatthat will over a lifetime span of a Human,

Millionen Männer und Frauen schlucken täglich synthetische Vitamine – sei es als Pillen oder in Form vitaminisierter Drinks. Diese Vitamine seien gesund, so die Botschaft der Hersteller.

Doch sind diese synthetischen Vitamine (oder künstlichen, was dasselbe ist) wirklich genau so gesund wie die natürlicherweise in Obst und Gemüse vorkommenden Vitamine? Nein, natürlich nicht

VITAMIN
 

VITAMINE+

      VITAMINNX

REAL VITAMINES 

NATURAL VITAMINES

Wo kommen natürliche Vitamine vor und wie werden die synthetischen Vitamine eigentlich hergestellt?

Vitamin A (Retinol)

Natürliches Vorkommen

Tierischen Lebensmitteln von Beta-Carotin kann der Organismus, Vitamin A herstellen

Synthetische Herstellung

Anzeige

 

Ausgangsmaterial sind petrochemische Grundstoffe 

Beta-Carotin

Natürliches Vorkommen

  • Gehört zu den Naturfarbstoffen und ist u.a. in Möhre, Brokkoli, Spinat und Tomate enthalten

Synthetische Herstellung

  • Kann aus Traubenzucker hergestellt werden; aber auch mit gentechnisch veränderten Mikroorganismen

 

Vitamin B1 (Thiamin)

Natürliches Vorkommen

  • Steckt insbesondere in Keimlingen und Vollkornprodukten, Haferflocken und Hülsenfrüchten

Synthetische Herstellung

  • Ausgangsmaterial sind Substanzen aus der Steinkohlenteer-Chemie

 

Vitamin B2 (Riboflavin)

Natürliches Vorkommen

  • Kommt u.a. in Milch, Käse, Eiern, Fleisch, Hefe und Leber vor

Synthetische Herstellung

  • Wird entweder chemisch-synthetisch oder mit Hilfe von gentechnisch veränderten Mikroorganismen produziert. E-Nummer: 101 (gelber Farbstoff)

Vitamin B3 (Niacin)

Natürliches Vorkommen

  • Ist in sehr vielen tierischen und pflanzlichen Nahrungsmitteln enthalten; der Körper kann Niacin auch selbst herstellen

Synthetische Herstellung

  • Wird u.a. aus Nikotin mittels Salpetersäure erzeugt

Pantothensäure (Vitamin B5)

Natürliches Vorkommen

  • Steckt u.a. in Hefe, Eigelb, Leber, Milch und Vollkornprodukten

Synthetische Herstellung

  • Wird entweder chemisch-synthetisch oder mit Hilfe von gentechnisch veränderten Mikroorganismen produziert

Vitamin B6 (Pyridoxin)

Natürliches Vorkommen

  • Ist in nahezu allen pflanzlichen und tierischen Lebensmitteln enthalten. Gute Lieferanten sind: Avocados, Bananen, Geflügel und Leber

Synthetische Herstellung

  • Wird chemisch-synthetisch aus petrochemischen Grundstoffen hergestellt

Biotin (Vitamin B7)

Natürliches Vorkommen

  • Ist in vielen Lebensmitteln enthalten; gute Quellen sind: Hefe, Leber, Nüsse, Haferflocken, Linsen, Eigelb

Synthetische Herstellung

  • Wird aus Glukose (ein Einfachzucker) mit Hilfe gentechnisch veränderter Bakterien gewonnen

Folsäure (Vitamin B9)

Natürliches Vorkommen

  • Insbesondere enthalten in Leber, dunkelgrünem Blattgemüse und Salaten, Weizenkeimen, Sojamehl, Fenchel und weißen Bohnen

Synthetische Herstellung

  • Chemisch-synthetische Herstellung aus petrochemischen Grundstoffen

Cobalamine (Vitamin B12)

Natürliches Vorkommen

  • Kommt vor allem in tierischen Lebensmitteln wie Leber, Fleisch, Fisch, Milch, Eiern, Sauerkraut und Bier vor

Synthetische Herstellung

  • Wird mittlerweile mit Hilfe gentechnisch veränderten Mikroorganismen hergestellt

Vitamin C (Ascorbinsäure)

Natürliches Vorkommen

  • Insbesondere enthalten in Acerolakirsche, Hagebutte, Sanddorn, Schwarze Johannisbeere, Grünkohl, Rosenkohl, Paprika und Brokkoli

Synthetische Herstellung

  • Wird aus Glukose mit Oxidationsmitteln und Aceton erzeugt; mittlerweile in großen Mengen auch mit Hilfe von Gentechnik; E-Nummer: 300

Vitamin D

Natürliches Vorkommen

  • 80 Prozent des Vitamins stellt der Körper selbst her (Sonnenlicht); der Rest kommt aus der Nahrung; gute Quellen: Fisch, Fleisch, Pilze und Butter

Synthetische Herstellung

  • Ausgangsmaterial ist Hefe, aus der das Vitamin in mehreren Produktionsstufen gewonnen wird

Vitamin E (u.a. Tocopherol)

Natürliches Vorkommen

  • Ist vor allem in Pflanzenölen (z. B. Weizenkeimöl, Rapsöl), Nüssen und Samen enthalten

Synthetische Herstellung

  • Tocopherol wird chemisch-synthetisch gewonnen oder aus Mais, Soja etc. extrahiert; E-Nummer: 306 (Antioxidationsmittel)

Vitamin K

Natürliches Vorkommen

  • Insbesondere in gelbem und grünem Blattgemüse enthalten, zum Beispiel in Spinat und Grünkohl

Synthetische Herstellung

  • Ausgangsmaterial sind Substanzen aus der Steinkohlenteer-Chemiea

Magismus

 

Alternative Medikamente und Homöopathie von Bioherby

Kraft der Bioherby Natur Magismus

Wo kommen natürliche Vitamine vor und wie werden die synthetischen Vitamine eigentlich hergestellt?

Vitamin A (Retinol)

Natürliches Vorkommen

Tierischen Lebensmitteln von Beta-Carotin kann der Organismus, Vitamin A herstellen

Synthetische Herstellung

Anzeige

 

Ausgangsmaterial sind petrochemische Grundstoffe 

Beta-Carotin

Natürliches Vorkommen

  • Gehört zu den Naturfarbstoffen und ist u.a. in Möhre, Brokkoli, Spinat und Tomate enthalten

Synthetische Herstellung

  • Kann aus Traubenzucker hergestellt werden; aber auch mit gentechnisch veränderten Mikroorganismen

 

Vitamin B1 (Thiamin)

Natürliches Vorkommen

  • Steckt insbesondere in Keimlingen und Vollkornprodukten, Haferflocken und Hülsenfrüchten

Synthetische Herstellung

  • Ausgangsmaterial sind Substanzen aus der Steinkohlenteer-Chemie

 

Vitamin B2 (Riboflavin)

Natürliches Vorkommen

  • Kommt u.a. in Milch, Käse, Eiern, Fleisch, Hefe und Leber vor

Synthetische Herstellung

  • Wird entweder chemisch-synthetisch oder mit Hilfe von gentechnisch veränderten Mikroorganismen produziert. E-Nummer: 101 (gelber Farbstoff)

Vitamin B3 (Niacin)

Natürliches Vorkommen

  • Ist in sehr vielen tierischen und pflanzlichen Nahrungsmitteln enthalten; der Körper kann Niacin auch selbst herstellen

Synthetische Herstellung

  • Wird u.a. aus Nikotin mittels Salpetersäure erzeugt

Pantothensäure (Vitamin B5)

Natürliches Vorkommen

  • Steckt u.a. in Hefe, Eigelb, Leber, Milch und Vollkornprodukten

Synthetische Herstellung

  • Wird entweder chemisch-synthetisch oder mit Hilfe von gentechnisch veränderten Mikroorganismen produziert

Vitamin B6 (Pyridoxin)

Natürliches Vorkommen

  • Ist in nahezu allen pflanzlichen und tierischen Lebensmitteln enthalten. Gute Lieferanten sind: Avocados, Bananen, Geflügel und Leber

Synthetische Herstellung

  • Wird chemisch-synthetisch aus petrochemischen Grundstoffen hergestellt

Biotin (Vitamin B7)

Natürliches Vorkommen

  • Ist in vielen Lebensmitteln enthalten; gute Quellen sind: Hefe, Leber, Nüsse, Haferflocken, Linsen, Eigelb

Synthetische Herstellung

  • Wird aus Glukose (ein Einfachzucker) mit Hilfe gentechnisch veränderter Bakterien gewonnen

Folsäure (Vitamin B9)

Natürliches Vorkommen

  • Insbesondere enthalten in Leber, dunkelgrünem Blattgemüse und Salaten, Weizenkeimen, Sojamehl, Fenchel und weißen Bohnen

Synthetische Herstellung

  • Chemisch-synthetische Herstellung aus petrochemischen Grundstoffen

Cobalamine (Vitamin B12)

Natürliches Vorkommen

  • Kommt vor allem in tierischen Lebensmitteln wie Leber, Fleisch, Fisch, Milch, Eiern, Sauerkraut und Bier vor

Synthetische Herstellung

  • Wird mittlerweile mit Hilfe gentechnisch veränderten Mikroorganismen hergestellt

Vitamin C (Ascorbinsäure)

Natürliches Vorkommen

  • Insbesondere enthalten in Acerolakirsche, Hagebutte, Sanddorn, Schwarze Johannisbeere, Grünkohl, Rosenkohl, Paprika und Brokkoli

Synthetische Herstellung

  • Wird aus Glukose mit Oxidationsmitteln und Aceton erzeugt; mittlerweile in großen Mengen auch mit Hilfe von Gentechnik; E-Nummer: 300

Vitamin D

Natürliches Vorkommen

  • 80 Prozent des Vitamins stellt der Körper selbst her (Sonnenlicht); der Rest kommt aus der Nahrung; gute Quellen: Fisch, Fleisch, Pilze und Butter

Synthetische Herstellung

  • Ausgangsmaterial ist Hefe, aus der das Vitamin in mehreren Produktionsstufen gewonnen wird

Vitamin E (u.a. Tocopherol)

Natürliches Vorkommen

  • Ist vor allem in Pflanzenölen (z. B. Weizenkeimöl, Rapsöl), Nüssen und Samen enthalten

Synthetische Herstellung

  • Tocopherol wird chemisch-synthetisch gewonnen oder aus Mais, Soja etc. extrahiert; E-Nummer: 306 (Antioxidationsmittel)

Vitamin K

Natürliches Vorkommen

  • Insbesondere in gelbem und grünem Blattgemüse enthalten, zum Beispiel in Spinat und Grünkohl

Synthetische Herstellung

  • Ausgangsmaterial sind Substanzen aus der Steinkohlenteer-Chemiea

Magismus

 

Alternative Medikamente und Homöopathie von Bioherby

Kraft der Bioherby Natur Magismus

Natur Magismus

 

Please read more  Stress iAlternative Medikamente und Homöopathie von Bioherby

  • Abramson L. Y., Alloy L. B., Hankin B. L., Haeffel G. J., Maccoon D. G., Gibb B. E. (2002). Cognitive vulnerability-stress models of depression in a self-regulatory and psychobiological context, in Handbook of depression, eds Gotlib I. H., Hammen C. L. (New York, NY: Guilford Press; ), 268–294 [Google Scholar]

  • Agnew N., Agnew M. (1963). Drive level effects on tasks of narrow and broad attention. Q. J. Exp. Psychol. A 15, 58–62 [Google Scholar]

  • Airaksinen E., Larsson M., Forsell Y. (2005). Neuropsychological functions in anxiety disorders in population-based samples: evidence of episodic memory dysfunction. J. Psychiatr. Res. 39, 207–214 10.1016/j.jpsychires.2004.06.001 [PubMed] [CrossRef] [Google Scholar]

  • Algom D. (2004). A rational look at the emotional stroop phenomenon: a generic slowdown, not a stroop effect. J. Exp. Psychol. Gen. 133, 323–338 10.1037/0096-3445.133.3.323 [PubMed] [CrossRef] [Google Scholar]

  • Amir N., McNally R. J., Riemann B. C., Burns J., Lorenz M., Mullen J. T. (1996). Suppression of the emotional Stroop effect by increased anxiety in patients with social phobia. Behav. Res. Ther. 34, 945–948 [PubMed] [Google Scholar]

  • Ashcraft M. H., Kirk E. P. (2001). The relationships among working memory, math anxiety, and performance. J. Exp. Psychol. Gen. 130, 224 10.1037/0096-3445.130.2.224 [PubMed] [CrossRef] [Google Scholar]

  • Asmundson G., Stein M., Larsen D., Walker J. (1994). Neurocognitive function in panic disorder and social phobia patients. Anxiety 1, 201 [PubMed] [Google Scholar]

  • Baas J. M. P., Milstein J., Donlevy M., Grillon C. (2006). Brainstem correlates of defensive states in humans. Biol. Psychiatry 59, 588–593 10.1016/j.biopsych.2005.09.009 [PubMed] [CrossRef] [Google Scholar]

  • Baddeley A. D., Warrington E. K. (1970). Amnesia and the distinction between long- and short-term memory. J. Verbal Learn. Verbal Behav. 9, 176–189 [Google Scholar]

  • Bar-Haim Y., Holoshitz Y., Eldar S., Frenkel T., Muller D., Charney D., et al. (2010). Life-threatening danger and suppression of attention bias to threat. Am. J. Psychiatry 167, 694–698 10.1176/appi.ajp.2009.09070956 [PubMed] [CrossRef] [Google Scholar]

  • Bar-Haim Y., Lamy D., Pergamin L., Bakermans-Kranenburg M. J., Van I. M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 10.1037/0033-2909.133.1.1 [PubMed] [CrossRef] [Google Scholar]

  • Beddington J., Cooper C. L., Field J., Goswami U., Huppert F. A., Jenkins R., et al. (2008). The mental wealth of nations. Nature 455, 1057–1060 10.1038/4551057a [PubMed] [CrossRef] [Google Scholar]

  • Bishop S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11, 307–316 10.1016/j.tics.2007.05.00